
Abstract  ­  Intel Ethernet Flow Director is an advanced 
network interface card (NIC) technology. It provides the benefits 
of parallel receive processing in multiprocessing environments 
and can automatically steer incoming network data to the same 
core on which its application process resides. However, our 
analysis and experiments show that Flow Director cannot 
guarantee in-order packet delivery in multiprocessing 
environments. Packet reordering causes various negative 
impacts. E.g., TCP performs poorly with severe packet 
reordering. In this paper, we use a simplified model to analyze 
why Flow Director can cause packet reordering. Our 
experiments verify our analysis. 

Index Terms – Packet Reordering, Flow Director, TCP, High 
Performance Networking. 

1. Introduction 

Computing is now shifting towards multiprocessing (e.g., 
CMP, SMP, and UNMA). The fundamental goal of 
multiprocessing is improved performance through the 
introduction of additional hardware threads, CPUs, or cores 
(all of which will be referred to as “cores” for simplicity). The 
emergence of multiprocessing has brought both opportunities 
and challenges for TCP/IP performance optimization in such 
environments. Modern network stacks can exploit parallel 
cores to allow either message-based parallelism or connection-
based parallelism as a means of enhancing performance [1]. 
While existing OSes exploit parallelism by allowing multiple 
threads to carry out network operations concurrently in the 
kernel, supporting this parallelism carries significant costs, 
particularly in the context of contention for shared resources, 
software synchronization, and poor cache efficiencies [1][2]. 
Investigations regarding processor affinity [3][4][5] indicate 
that the coordinated affinity scheduling of protocol processing 
and network applications on the same target cores can 
significantly reduce contention for shared resources, minimize 
software synchronization overheads, and enhance cache 
efficiency.  

Coordinated affinity scheduling of protocol processing 
and network applications on the same target cores has the 
following goals: (1) Interrupt affinity: Network interrupts of 
the same type should be directed to a single core. 
Redistributing network interrupts in either a random or round-
robin fashion to different cores has undesirable side effects 
[4]. (2) Flow affinity: Packets belonging to a specific flow 
should be processed by the same core. Flow affinity is 
especially important for TCP. TCP is a connection-oriented 
protocol, and it has a large and frequently accessed state that 
must be shared and protected when packets from the same 
connection are processed. Ensuring that all packets in a TCP 
flow are processed by a single core reduces contention for 
shared resources, minimizes software synchronization, and 

enhances cache efficiency. (3) Network data affinity: 
Incoming network data should be steered to the same core on 
which its application process resides. This is becoming more 
important with the advent of Direct Cache Access (DCA) [6]. 
Network data affinity maximizes cache efficiency and reduces 
core-to-core synchronization. In a multicore system, the 
function of network data steering is executed by directing the 
corresponding network interrupts to a specific core (or cores). 

Receive Side Scaling (RSS) [7] is a NIC technology. It 
supports multiple receive queues and integrates a hashing 
function in the NIC. The NIC computes a hash value for each 
incoming packet. Based on hash values, NIC assigns packets 
of the same data flow to a single queue and evenly distributes 
traffic flows across queues. With Message Signal Interrupt 
(MSI/MSI-X) [8] support, each receive queue is assigned a 
dedicated interrupt and RSS steers interrupts on a per-queue 
basis. RSS provides the benefits of parallel receive processing 
in multiprocessing environments. Operating systems like 
Windows, Solaris, Linux, and FreeBSD now support interrupt 
affinity. When an RSS receive queue (or interrupt) is tied to a 
specific core, packets from the same flow are steered to that 
core (Flow pinning [9]). This ensures flow affinity on most 
OSes, with Linux being the major exception. However, RSS 
has a limitation: it cannot steer incoming network data to the 
same core where its application process resides. The reason is 
simple: the existing RSS-enabled NICs do not maintain the 
relationship in the NIC: 

 Traffic Flows → Network applications → Cores  
Since network applications run on cores, the most critical 
relationship is simply: 

Traffic Flows → Cores (Applications) 
Unfortunately, RSS does not support such capability. This is 
symptomatic of a broader disconnect between existing 
software architecture and multicore hardware. With OSes like 
Windows and Linux, if an application is running on one core, 
while RSS has scheduled received traffic to be processed on a 
different core, poor cache efficiency and significant core-to-
core synchronization overheads will result. The overall system 
efficiency may be severely degraded. To remedy the RSS 
limitation, the Intel Ethernet Flow Director technology [10] 
has been introduced. The basic idea is simple: Flow Director 
maintains the relationship “Traffic Flows → Cores 
(Applications)” in the NIC. OSes are correspondingly 
enhanced to support such capability. Flow Director not only 
provides the benefits of parallel receive processing in 
multiprocessing environments, it also can automatically steer 
packets of a specific data flow to the same core, where they 
will be protocol-processed and finally consumed by the 
application. However, our analysis and experiments show that 
Flow Director cannot guarantee in-order packet delivery in 
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multiprocessing environments. TCP performance suffers in the 
event of severe packet reordering. In this paper, we use a 
simplified model to analyze why Flow Director can cause 
packet reordering. Our experiments verify our analysis.  

2. Why does Flow Director Cause Packet Reordering? 

Intel Ethernet Flow Director [10] is a NIC technology. It 
supports multiple receive queues in the NIC, up to the number 
of cores in the system. With MSI/MSI-X and Flow-Pinning 
support, each receive queue has a dedicated interrupt and is 
tied to a specific core; each core in the system is assigned a 
specific receive queue. The NIC device driver allocates and 
maintains a ring buffer in system memory for each receive 
queue. For packet reception, a ring buffer must be initialized 
and pre-allocated with empty packet buffers that have been 
memory-mapped into address space accessible by the NIC 
over the system I/O bus. The ring buffer size is device and 
driver-dependent. For Flow-Director-steering traffic, Flow 
Director maintains a “Traffic Flow → Core” table with a 
single entry per flow. Each entry tracks the receive queue 
(core) to which a flow should be assigned. Entries within the 
“Traffic Flow → Core” table are updated by outgoing packets. 
To support Flow Director, OS must be multiple TX queue 
capable [11]. Each core in the system is assigned a specific 
transmit queue. Outgoing traffic generated on a specific core 
is transmitted via its corresponding transmit queue. For an 
outgoing transport-layer packet, the OS records a processing 
core ID and pass it to the NIC to update the corresponding 
entry in the table. Flow Director makes use of the 5-tuple 
{src_addr, dst_addr, protocol, src_port, dst_port} in the 
receive direction to specify a flow. Therefore, for an outgoing 
packet with the header {(src_addr: x), (dst_addr: y), 
(protocol: z), (src_port: p), (dst_port: q)}, its corresponding 
flow entry in the table is identified as {(src_addr: y), 
(dst_addr: x), (protocol: z), (src_port: q), (dst_port: p)}. 

Fig. 1 illustrates packet receive-processing for transport-
layer packets with Flow Director. (1) When incoming packets 
arrive, the hash function is applied to the header to produce a 
hash result. Based on the hash result, the NIC identifies the 
core and hence, the associated receive queue. (2) The NIC 
assigns the incoming packets to the corresponding receive 
queues. (3) The NIC deposits via direct memory access 
(DMA) the received packets into the corresponding ring 

buffers in system memory. (4) The NIC sends interrupts to the 
cores associated with the non-empty queues. Subsequently, the 
cores respond to the network interrupts and process the 
received packets up through the network stack from the 
corresponding ring buffers one by one. As for non-Flow-
Director-steering traffic, please refer to [10] for more details. 

Flow Director not only provides the benefits of parallel 
receive processing in multiprocessing environments, it also 
can automatically steer packets of a data flow to the same 
core, where they will be protocol-processed and finally 
consumed by the application. However, our analysis shows 
that Flow Director cannot guarantee in-order packet delivery 
in multiprocessing environments. TCP performs poorly with 
severe packet reordering [12]. In the following section, we use 
a simplified model to 
analyze why Flow 
Director cannot 
guarantee in-order packet 
delivery. 

As shown in Fig. 2, 
at time 

€ 

T −ε , Flow 1’s 
flow entry maps to Core 
0 in the “Traffic Flow → 
Core” table. At this 
instant, packet S of Flow 
1 arrives; based on the “Traffic Flow → Core” table, it is 
assigned to Core 0. At time 

€ 

T , due to process migration, Flow 
1’s flow entry is updated and maps to Core 1. At 

€ 

T +ε , Packet 
S+1 of Flow 1 arrives and is assigned to the new core, namely 
Core 1. As described above, after assigning received packets 
to the corresponding receive queues, NIC copies them into 
system memory via DMA, and fires network interrupts, if 
necessary. When a core responds to a network interrupt, it 
processes received packets up through the network stack from 
the corresponding ring buffer one by one. In our case, Core 0 
processes packet S up through the network stack from Ring 
Buffer 0, and Core 1 services packet S+1 from Ring Buffer 1. 
Let 

€ 

Tservice (S)  and 

€ 

Tservice (S +1)  be the times at which the 
network stack starts to service packets S and S+1, 
respectively. If 

€ 

Tservice (S) >Tservice (S +1) , the network stack 
would receive packet S+1 earlier than packet S, resulting in 
packet reordering. Let D be the ring buffer size and let the 
network stack’s packet service rate be 

€ 

Rservice  (packets per 
second). Assume there are n packets ahead of S in Ring Buffer 
0 and m packets ahead of S+1 in Ring Buffer 1. Then: 

€ 

Tservice (S) =T −ε + n /Rservice   (1) 

€ 

Tservice (S +1) =T +ε +m /Rservice   (2) 
If 

€ 

ε  is small and 

€ 

n > m , the condition of 

€ 

Tservice (S) >Tservice (S +1)  would easily hold and lead to packet 
reordering. Since the ring buffer size is 

€ 

D, the worst case is 

€ 

n = D −1 and 

€ 

m = 0: 

€ 

Tservice (S) =T −ε + (D −1) /Rservice  (3) 

€ 

Tservice (S +1) =T +ε    (4) 
The ring buffer size D is a design parameter for the NIC 

and driver. For example, the Myricom 10Gb NIC is 512, and 
Intel’s 1Gb NIC is 256. 

 
Fig. 1 Flow Director Mechanism 

 
Fig. 2 A Simplified Model for 
Packet Reordering Analysis 



In a multicore system, a general-purpose OS scheduler 
tries to use all core resources in parallel as much as possible, 
distributing and adjusting the load among the cores. Process 
migration across cores occurs frequently. Flow Director can 
easily cause packet reordering in these conditions. 

To  validate  our  analysis,  we  ran  data  transmission 
experiments  over  an  isolated  network.  A  sender  was 
directly connected to a receiver via a physical 10Gbps link. 
The sender and receiver’s detailed features were:  

Sender: Dell R‐805. CPU: two Quad Core AMD Opteron 
2346HE,  1.8GHz. NIC: Myricom 10Gbps Ethernet NIC. OS: 
Linux 2.6.28.  

Receiver:  SuperMicro  Server.  CPU:  two  Intel  Xeon 
CPUs, 2.66 GHz, Family 6, Model 15. NIC: Intel X520 Server 
Adapter  with  Flow  Director  enabled  (configured  with 
suggested  default  parameters  [11]:  FdirMode=1, 
AtrSampleRate=20), 10Gbps. OS: Linux 2.6.34, Multiple TX 
Queue Capable. 

In our experiments, iperf [13] is used to send n parallel 
TCP streams from sender to receiver for 100 seconds. We 
ran “iperf –s” in the receiver. Linux was configured to run in 
multicore peak performance mode [14]. As a consequence, the 
scheduler tries to use all core resources in parallel as much as 
possible, distributing the load equally among the cores. Iperf is 
a multi-threaded network application. With multiple parallel 
TCP data streams, a dedicated child thread is spawned and 
assigned to handle each 
stream. As a result, iperf 
threads may migrate across 
cores. The receiver was 
instrumented to record out-
of-order packets, and we 
calculated relevant packet 
reordering ratios. The 
experiment results, with a 
95% confidence interval, 
are shown in Table 1.  

The degree of packet reordering is significant. At n=200, 
packet reordering  ratio  reaches  as  high  as  0.897%.  The 
experiment results validated our analysis. When the scheduler 
tries to use all core resources in parallel as much as possible, 

distributing the load equally among the cores, it will lead to 
frequent process migration. As our analysis suggested, the 
Flow Director mechanism would cause packet reordering 
when process migration occurs. In addition, we ran tcpdump 
to record a single stream’s packet  trace at  the receiver @ 
n=200.  The  packet  trace  analysis  in  Fig.  3  (using  tcptrace 
and xplot  [15])  clearly  shows  the occurrence of duplicate 
ACKs,  SACKs,  and  data  retransmissions  due  to  packet 
reordering.  

We then ran “taskset 0x01 iperf –s”  in the receiver to 
pin iperf to core 0 and repeated the above experiments. No 
packet reordering was discovered. This is because when iperf 
is  pinned  to  a  specific  core,  its  child  threads  are  also 
pinned to that core. There will be no process migration in 
this case. In these conditions, Flow Director does not cause 
packet reordering. 

3. Conclusion 

In this paper, we use a simplified model to analyze why 
Flow Director can cause packet reordering in multiprocessing 
environments. Our experiments validate our analysis. The 
contributions of this paper are twofold.  First, we show Intel 
Ethernet Flow Director cannot guarantee in-order packet 
delivery in multiprocessing environments. Second, we develop 
a simplified model to analyze why Flow Director causes 
packet reordering. 
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n Reordering Ratio 
40 0.498% ± 0.067%  

100 0.705% ± 0.042% 
200 0.897% ± 0.038%  

 
500 0.635% ± 0.154%  

 
1000 0.409% ± 0.009% 
2000 0.129% ± 0.003% 
Table 1 Experiment Results 

 
Fig.3 Packet Trace Analysis (@n=200) 

 


